Classification of Ehrhart polynomials of integral simplices

نویسنده

  • Akihiro Higashitani
چکیده

Let δ(P) = (δ0, δ1, . . . , δd) be the δ-vector of an integral convex polytope P of dimension d. First, by using two well-known inequalities on δ-vectors, we classify the possible δ-vectors with ∑d i=0 δi ≤ 3. Moreover, by means of Hermite normal forms of square matrices, we also classify the possible δ-vectors with ∑d i=0 δi = 4. In addition, for ∑d i=0 δi ≥ 5, we characterize the δ-vectors of integral simplices when ∑d i=0 δi is prime. Résumé. Soit δ(P) = (δ0, δ1, . . . , δd) le δ-vecteur d’un polytope intégrante de dimension d. Tout d’abord, en utilisant deux bien connus des inégalités sur δ-vecteurs, nous classons les δ-vecteurs possibles avec ∑d i=0 δi ≤ 3. En outre, par le biais de Hermite formes normales, nous avons également classer les δ-vecteurs avec ∑d i=0 δi = 4. De plus, pour ∑d i=0 δi ≥ 5, nous caractérisons les δ-vecteurs des simplex inégalités lorsque ∑d i=0 δi est premier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ehrhart Polynomials of Integral Simplices with Prime Volumes

For an integral convex polytope P ⊂ R of dimension d, we call δ(P) = (δ0, δ1, . . . , δd) the δ-vector of P and vol(P) = ∑d i=0 δi its normalized volume. In this paper, we will establish the new equalities and inequalities on δ-vectors for integral simplices whose normalized volumes are prime. Moreover, by using those, we will classify all the possible δ-vectors of integral simplices with norma...

متن کامل

Coefficient functions of the Ehrhart quasi-polynomials of rational polygons

In 1976, P. R. Scott characterized the Ehrhart polynomials of convex integral polygons. We study the same question for Ehrhart polynomials and quasi-polynomials of nonintegral convex polygons. Define a pseudo-integral polygon, or PIP, to be a convex rational polygon whose Ehrhart quasipolynomial is a polynomial. The numbers of lattice points on the interior and on the boundary of a PIP determin...

متن کامل

Coefficients and Roots of Ehrhart Polynomials

The Ehrhart polynomial of a convex lattice polytope counts integer points in integral dilates of the polytope. We present new linear inequalities satisfied by the coefficients of Ehrhart polynomials and relate them to known inequalities. We also investigate the roots of Ehrhart polynomials. We prove that for fixed d, there exists a bounded region of C containing all roots of Ehrhart polynomials...

متن کامل

Orientations, Lattice Polytopes, and Group Arrangements II: Modular and Integral Flow Polynomials of Graphs

We study modular and integral flow polynomials of graphs by means of subgroup arrangements and lattice polytopes. We introduce an Eulerian equivalence relation on orientations, flow arrangements, and flow polytopes; and we apply the theory of Ehrhart polynomials to obtain properties of modular and integral flow polynomials. The emphasis is on the geometrical treatment through subgroup arrangeme...

متن کامل

Counterexamples of the Conjecture on Roots of Ehrhart Polynomials

An outstanding conjecture on roots of Ehrhart polynomials says that all roots α of the Ehrhart polynomial of an integral convex polytope of dimension d satisfy −d ≤ R(α) ≤ d − 1. In this paper, we suggest some counterexamples of this conjecture.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012